Optimal sequence selection in proteins of known structure by simulated evolution.
نویسندگان
چکیده
Rational design of protein structure requires the identification of optimal sequences to carry out a particular function within a given backbone structure. A general solution to this problem requires that a potential function describing the energy of the system as a function of its atomic coordinates be minimized simultaneously over all available sequences and their three-dimensional atomic configurations. Here we present a method that explicitly minimizes a semiempirical potential function simultaneously in these two spaces, using a simulated annealing approach. The method takes the fixed three-dimensional coordinates of a protein backbone and stochastically generates possible sequences through the introduction of random mutations. The corresponding three-dimensional coordinates are constructed for each sequence by "redecorating" the backbone coordinates of the original structure with the corresponding side chains. These are then allowed to vary in their structure by random rotations around free torsional angles to generate a stochastic walk in configurational space. We have named this method protein simulated evolution, because, in loose analogy with natural selection, it randomly selects for allowed solutions in the sequence of a protein subject to the "selective pressure" of a potential function. Energies predicted by this method for sequences of a small group of residues in the hydrophobic core of the phage lambda cI repressor correlate well with experimentally determined biological activities. This "genetic selection by computer" approach has potential applications in protein engineering, rational protein design, and structure-based drug discovery.
منابع مشابه
Computational Identification of Micro RNAs and Their Transcript Target(s) in Field Mustard (Brassica rapa L.)
Background: Micro RNAs (miRNAs) are a pivotal part of non-protein-coding endogenous small RNA molecules that regulate the genes involved in plant growth and development, and respond to biotic and abiotic environmental stresses posttranscriptionally.Objective: In the present study, we report the results of a systemic search for identifi cation of new miRNAs in B. rapa using homology-based ...
متن کاملOptimization of Beam Orientation and Weight in Radiotherapy Treatment Planning using a Genetic Algorithm
Introduction: The selection of suitable beam angles and weights in external-beam radiotherapy is at present generally based upon the experience of the planner. Therefore, automated selection of beam angles and weights in forward-planned radiotherapy will be beneficial. Material and Methods: In this work, an efficient method is presented within the MATLAB environment to investigate how to improv...
متن کاملComparative Phylogenetic Perspectives on the Evolutionary Relationships in the Brine Shrimp Artemia Leach, 1819 (Crustacea: Anostraca) Based on Secondary Structure of ITS1 Gene
This is the first study on phylogenetic relationships in the genus Artemia Leach, 1819 using the pattern and sequence of secondary structures of internal transcribed spacer 1 (ITS1). Significant intraspecific variation in the secondary structure of ITS1 rRNA was found in Artemia tibetiana. In the phylogenetic tree based on joined primary and secondary structure sequences, Artemia urmiana and pa...
متن کاملThe roles of EPIYA sequence to perturb the cellular signaling pathways and cancer risk
Abstract It was shown that several pathogenic bacterial effector proteins contain the Glu-Pro-Ile-Tyr-Ala (EPIYA) or a similar sequence. These bacterial EPIYA effectors are delivered into host cell via type III or IV secretion system, where they undergo tyrosine phosphorylation at the EPIYA sequences, which triggers interaction with multiple host cell SH2 domain-containing proteins and thereby...
متن کاملEvolution of protein structural classes and protein sequence families.
In protein structure space, protein structures cluster into four elongated regions when mapped based solely on similarity among the 3D structures. These four regions correspond to the four major classes of present-day proteins defined by the contents of secondary structure types and their topological arrangement. Evolution of and restriction to these four classes suggest that, in most cases, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 91 13 شماره
صفحات -
تاریخ انتشار 1994